• Title of article

    On extremal -supereulerian graphs

  • Author/Authors

    Niu، نويسنده , , Zhaohong and Sun، نويسنده , , Qun Liang and Xiong، نويسنده , , Liming and Lai، نويسنده , , Hongjian and Yan، نويسنده , , Huiya، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2014
  • Pages
    11
  • From page
    50
  • To page
    60
  • Abstract
    A graph G is called k -supereulerian if it has a spanning even subgraph with at most k components. In this paper, we prove that any 2-edge-connected loopless graph of order n is ⌈ ( n − 2 ) / 3 ⌉ -supereulerian, with only one exception. This result solves a conjecture in [Z. Niu, L. Xiong, Even factor of a graph with a bounded number of components, Australas. J. Combin. 48 (2010) 269–279]. As applications, we give a best possible size lower bound for a 2-edge-connected simple graph G with n > 5 k + 2 vertices to be k -supereulerian, a best possible minimum degree lower bound for a 2-edge-connected simple graph G such that its line graph L ( G ) has a 2-factor with at most k components, for any given integer k > 0 , and a sufficient condition for k -supereulerian graphs.
  • Keywords
    Supereulerian graph , 2-factor , Even factor , Reduced graph , k -supereulerian graph
  • Journal title
    Discrete Mathematics
  • Serial Year
    2014
  • Journal title
    Discrete Mathematics
  • Record number

    1600541