Title of article
Semidefinite programming for permutation codes
Author/Authors
Bogaerts، نويسنده , , Mathieu and Dukes، نويسنده , , Peter، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2014
Pages
10
From page
34
To page
43
Abstract
We initiate study of the Terwilliger algebra and related semidefinite programming techniques for the conjugacy scheme of the symmetric group Sym ( n ) . In particular, we compute orbits of ordered pairs on Sym ( n ) acted upon by conjugation and inversion, explore a block diagonalization of the associated algebra, and obtain improved upper bounds on the size M ( n , D ) of permutation codes of lengths n = 6 , 7 . For instance, these techniques detect the nonexistence of the projective plane of order six via M ( 6 , 5 ) < 30 and yield a new upper bound M ( 7 , 4 ) ≤ 535 for a challenging open case. Each of these represents an improvement on earlier Delsarte linear programming results.
Keywords
symmetric group , Permutation code , Terwilliger algebra , semidefinite programming
Journal title
Discrete Mathematics
Serial Year
2014
Journal title
Discrete Mathematics
Record number
1600660
Link To Document