Title of article
Uniqueness and stability in inverse parabolic equations with memory
Author/Authors
N. Baranibalan، نويسنده , , N. R. Sakthivel، نويسنده , , K. K. Balachandran، نويسنده , , K.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2008
Pages
12
From page
1077
To page
1088
Abstract
First we establish a Carleman estimate for parabolic equations with second order spatial memory. Then we prove the stability results for the coefficient q from a measurement of the solution with respect to the normal derivative on an arbitrary part of the boundary and certain spatial derivatives at t = θ . Further we deduce the uniqueness result under some equivalence conditions on the solutions about the potential q . The proof of the results rely on Carleman estimates and certain energy estimates for parabolic equations with memory.
Keywords
stability , inverse problems , Carleman estimate , Memory kernel
Journal title
Nonlinear Analysis Hybrid Systems
Serial Year
2008
Journal title
Nonlinear Analysis Hybrid Systems
Record number
1602268
Link To Document