• Title of article

    Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network

  • Author/Authors

    Najafi، نويسنده , , G. and Ghobadian، نويسنده , , B. and Tavakoli، نويسنده , , T. and Buttsworth، نويسنده , , D.R. and Yusaf، نويسنده , , T.F. and Faizollahnejad، نويسنده , , M.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2009
  • Pages
    10
  • From page
    630
  • To page
    639
  • Abstract
    The purpose of this study is to experimentally analyse the performance and the pollutant emissions of a four-stroke SI engine operating on ethanol–gasoline blends of 0%, 5%, 10%, 15% and 20% with the aid of artificial neural network (ANN). The properties of bioethanol were measured based on American Society for Testing and Materials (ASTM) standards. The experimental results revealed that using ethanol–gasoline blended fuels increased the power and torque output of the engine marginally. For ethanol blends it was found that the brake specific fuel consumption (bsfc) was decreased while the brake thermal efficiency (ηb.th.) and the volumetric efficiency (ηv) were increased. The concentration of CO and HC emissions in the exhaust pipe were measured and found to be decreased when ethanol blends were introduced. This was due to the high oxygen percentage in the ethanol. In contrast, the concentration of CO2 and NOx was found to be increased when ethanol is introduced. An ANN model was developed to predict a correlation between brake power, torque, brake specific fuel consumption, brake thermal efficiency, volumetric efficiency and emission components using different gasoline–ethanol blends and speeds as inputs data. About 70% of the total experimental data were used for training purposes, while the 30% were used for testing. A standard Back-Propagation algorithm for the engine was used in this model. A multi layer perception network (MLP) was used for nonlinear mapping between the input and the output parameters. It was observed that the ANN model can predict engine performance and exhaust emissions with correlation coefficient (R) in the range of 0.97–1. Mean relative errors (MRE) values were in the range of 0.46–5.57%, while root mean square errors (RMSE) were found to be very low. This study demonstrates that ANN approach can be used to accurately predict the SI engine performance and emissions.
  • Keywords
    Exhaust emissions , Engine performance , Ethanol–gasoline blends , Artificial neural network , SI engine
  • Journal title
    Applied Energy
  • Serial Year
    2009
  • Journal title
    Applied Energy
  • Record number

    1602778