Title of article
Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach
Author/Authors
Chen، نويسنده , , Kuilin and Yu، نويسنده , , Jie، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2014
Pages
16
From page
690
To page
705
Abstract
Accurate wind speed forecasting is becoming increasingly important to improve and optimize renewable wind power generation. Particularly, reliable short-term wind speed prediction can enable model predictive control of wind turbines and real-time optimization of wind farm operation. However, this task remains challenging due to the strong stochastic nature and dynamic uncertainty of wind speed. In this study, unscented Kalman filter (UKF) is integrated with support vector regression (SVR) based state-space model in order to precisely update the short-term estimation of wind speed sequence. In the proposed SVR–UKF approach, support vector regression is first employed to formulate a nonlinear state-space model and then unscented Kalman filter is adopted to perform dynamic state estimation recursively on wind sequence with stochastic uncertainty. The novel SVR–UKF method is compared with artificial neural networks (ANNs), SVR, autoregressive (AR) and autoregressive integrated with Kalman filter (AR-Kalman) approaches for predicting short-term wind speed sequences collected from three sites in Massachusetts, USA. The forecasting results indicate that the proposed method has much better performance in both one-step-ahead and multi-step-ahead wind speed predictions than the other approaches across all the locations.
Keywords
Support vector regression , wind speed prediction , Renewable wind energy , stochastic system , Dynamic uncertainty , Unscented Kalman Filter
Journal title
Applied Energy
Serial Year
2014
Journal title
Applied Energy
Record number
1606776
Link To Document