• Title of article

    Formation of a New Quinone Methide Intermediate during the Oxidative Transformation of 3,4-Dihydroxyphenylacetic Acids: Implication for Eumelanin Biosynthesis

  • Author/Authors

    Sugumaran، نويسنده , , Manickam and Duggaraju، نويسنده , , Padma and Jayachandran، نويسنده , , Ezhuthachan and Kirk، نويسنده , , Kenneth L.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 1999
  • Pages
    9
  • From page
    98
  • To page
    106
  • Abstract
    Oxidation of dopa and dopamine requires a net removal six electrons to produce indolequinones, the monomeric precursors of eumelanin pigment. On the other hand, their 6-fluoroderivatives suffer only four-electron oxidation to yield the same products (M. E. Rice, B. Mogaddam, C. R. Creveling, and K. L. Kirk, Anal. Chem. 59, 1534–1536, 1987). Taking advantage of this novel fluorochemistry, we reexamined the oxidative mechanism of 3,4-dihydroxyphenylacetic acid and 6-fluoro-3,4-dihydroxyphenylacetic acid to throw more light on the nature of reactive intermediates formed during the reaction. Enzymatic or chemical oxidation of 3,4-dihydroxyphenylacetic acid generated the transient o-quinone which exhibited rapid intramolecular cyclization and side chain modification to produce 2,5,6-trihydrobenzofuran and 3,4-dihydroxymandelic acid, respectively. However, when 6-fluoro-3,4-dihydroxyphenylacetic acid was oxidized either by tyrosinase or by sodium periodate, the resultant quinone uniquely exhibited only cyclization coupled with loss of fluoride ion. This clean reaction allowed us to establish the structures of the transient reactive intermediates. Two interconvertable isomeric forms of the product were isolated and characterized from the reaction mixture. If the oxidation was carried out in water, a yellow quinolactone accumulated in the reaction mixture. This compound was instantaneously converted to a purple quinone methide upon addition of a trace amount of sodium phosphate. Passage through a C18 HPLC column caused the reverse transformation. The structures of these products were established by semiempirical molecular orbital calculations and NMR spectrometry. Comparison of the oxidation mechanisms of melanin precursors, dopa and dopamine, with that of 3,4-dihydroxyphenylacetic acids reveals that a similar quinone methide intermediate is likely to be formed during eumelanin biosynthesis.
  • Keywords
    homoprotocatechuate oxidation , mechanism of melanogenesis , quinone methide formation , quinone isomerization
  • Journal title
    Archives of Biochemistry and Biophysics
  • Serial Year
    1999
  • Journal title
    Archives of Biochemistry and Biophysics
  • Record number

    1615504