Title of article
Empirical kinetic model of sodium alanate reacting system (II). Hydrogen desorption
Author/Authors
Lozano، نويسنده , , Gustavo A. and Ranong، نويسنده , , Chakkrit Na and Bellosta von Colbe، نويسنده , , Jose M. and Bormann، نويسنده , , Rüdiger and Fieg، نويسنده , , Georg and Hapke، نويسنده , , Jobst and Dornheim، نويسنده , , Martin، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2010
Pages
8
From page
7539
To page
7546
Abstract
Simulation and design of hydrogen storage systems based on metal hydrides require appropriate quantitative kinetic description. This paper presents an empirical kinetic model for the two-step hydrogen desorption of sodium alanate material doped with aluminium-reduced TiCl4, produced in kg-scale. The model is based on kinetic data obtained by volumetric titration measurements within a range of experimental conditions varying from 0 bar to 35 bar and from 100 °C to 190 °C. It is shown that while the first desorption step is a zero-order reaction, the second desorption step follows the Johnson–Mehl–Avrami (JMA) equation with n = 1. The predictions of the model are validated by experimental results and are used to asses the pressure–temperature (p–T) performance of the desorption steps against selected hydrogen supply criteria. This paper complements a previous paper of this investigation that presented the kinetic model of the corresponding hydrogen absorption of sodium alanate material.
Keywords
Sodium alanate , Hydrogen storage modeling , Hydrogen storage , Metal hydrides , Kinetic model
Journal title
International Journal of Hydrogen Energy
Serial Year
2010
Journal title
International Journal of Hydrogen Energy
Record number
1661759
Link To Document