• Title of article

    Readily regenerable reduced microstructure representations

  • Author/Authors

    Teranishi، نويسنده , , Keita and Raghavan، نويسنده , , Padma and Zhang، نويسنده , , Jingxian and Wang، نويسنده , , Tao and Chen، نويسنده , , Long-Qing and Liu، نويسنده , , Zi-Kui، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2008
  • Pages
    12
  • From page
    368
  • To page
    379
  • Abstract
    Many of the physical properties of materials are critically dependent on their microstructure. In recent years, there has been increasing interest in using computer simulations based on phase-field models for the spatial and temporal evolution of microstructures. Although such simulations are computationally expensive, the generated set of microstructures can be stored in a repository and used for further analysis in materials design. However, such an approach requires a substantial amount of storage, for example, approximately 1 Terabyte for a single binary alloy. In this paper, we develop fast data compression and regeneration schemes for two-dimensional microstructures that can reduce storage requirements without compromising the accuracy of computed values, such as stress fields used in analysis. Our main contribution is the development and evaluation of a sparse skeletal representation scheme which outperforms traditional compression schemes. Our results indicate that our scheme can reduce microstructure data size by more than two orders of magnitude while achieving better accuracies for the computed stress fields and order parameters.
  • Keywords
    DATABASE , microstructure , Data Compression , Microstructure representation , phase-field model
  • Journal title
    Computational Materials Science
  • Serial Year
    2008
  • Journal title
    Computational Materials Science
  • Record number

    1683327