• Title of article

    Synthesis of exfoliated acrylonitrile–butadiene–styrene copolymer (ABS) clay nanocomposites: role of clay as a colloidal stabilizer

  • Author/Authors

    Choi، نويسنده , , Yeong Suk and Xu، نويسنده , , Mingzhe and Chung، نويسنده , , In Jae، نويسنده ,

  • Issue Information
    دوهفته نامه با شماره پیاپی سال 2005
  • Pages
    8
  • From page
    531
  • To page
    538
  • Abstract
    Acrylonitrile–butadiene–styrene copolymer (ABS) clay nanocomposites were synthesized using two clays (sodium montmorillonite, laponite). Both colloidal stability and mechanical properties of the nanocomposites were dependant on aspect ratios of clays. Laponite, a low aspect ratio clay, reduced particle sizes of ABS clay nanocomposite latexes, enhanced colloidal stabilities, and increased viscosity of the latexes. The colloidal stability of ABS clay latexes may result from four factors. Firstly, the electrostatic repulsion forces originated from surface charges of clays and anionic surfactant contribute to colloidal stability. Secondly, laponite layers separate sodium montmorillonite layers and polybudadiene latex particles preventing the coagulation. Thirdly, the laponite layers adsorbed on latexes act like steric barriers against coagulation. Fourthly, increased viscosity reduces latex mobility, lowering collision possibility among latex particles. Resultant ABS clay nanocomposites showed exfoliated structures, and their mechanical properties related to the relative weight ratio of sodium montmorillonite to laponite: as portions of sodium montmorillonite increased, dynamic moduli of the nanocomposites increased, because sodium montmorillonite has higher aspect (length/thickness) ratio than laponite.
  • Keywords
    nanocomposites , Laponite , Sodium montmorillonite (Na-MMT)
  • Journal title
    Polymer
  • Serial Year
    2005
  • Journal title
    Polymer
  • Record number

    1722555