• Title of article

    Actions of the Neumann systems via Picard–Fuchs equations

  • Author/Authors

    Dullin، نويسنده , , Holger R. and Richter، نويسنده , , Peter H. and Veselov، نويسنده , , Alexander P. and Waalkens، نويسنده , , Holger، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2001
  • Pages
    25
  • From page
    159
  • To page
    183
  • Abstract
    The Neumann system describing the motion of a particle on an n-dimensional sphere with an anisotropic harmonic potential has been celebrated as one of the best understood integrable systems of classical mechanics. The present paper adds a detailed discussion and the determination of its action integrals, using differential equations rather than standard integral formulas. We show that the actions of the Neumann system satisfy a Picard–Fuchs equation which in suitable coordinates has a rather simple form for arbitrary n. We also present an explicit form of the related Gauß–Manin equations. These formulas are used for the numerical calculation of the actions of the Neumann system.
  • Keywords
    Action variables , Neumann system , integrable systems , Picard–Fuchs equation
  • Journal title
    Physica D Nonlinear Phenomena
  • Serial Year
    2001
  • Journal title
    Physica D Nonlinear Phenomena
  • Record number

    1724302