Title of article
Actions of the Neumann systems via Picard–Fuchs equations
Author/Authors
Dullin، نويسنده , , Holger R. and Richter، نويسنده , , Peter H. and Veselov، نويسنده , , Alexander P. and Waalkens، نويسنده , , Holger، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2001
Pages
25
From page
159
To page
183
Abstract
The Neumann system describing the motion of a particle on an n-dimensional sphere with an anisotropic harmonic potential has been celebrated as one of the best understood integrable systems of classical mechanics. The present paper adds a detailed discussion and the determination of its action integrals, using differential equations rather than standard integral formulas. We show that the actions of the Neumann system satisfy a Picard–Fuchs equation which in suitable coordinates has a rather simple form for arbitrary n. We also present an explicit form of the related Gauß–Manin equations. These formulas are used for the numerical calculation of the actions of the Neumann system.
Keywords
Action variables , Neumann system , integrable systems , Picard–Fuchs equation
Journal title
Physica D Nonlinear Phenomena
Serial Year
2001
Journal title
Physica D Nonlinear Phenomena
Record number
1724302
Link To Document