• Title of article

    Predictive models for multibiometric systems

  • Author/Authors

    Nair، نويسنده , , Suresh Kumar Ramachandran and Bhanu، نويسنده , , Bir and Ghosh، نويسنده , , Subir and Thakoor، نويسنده , , Ninad S.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2014
  • Pages
    14
  • From page
    3779
  • To page
    3792
  • Abstract
    Recognizing a subject given a set of biometrics is a fundamental pattern recognition problem. This paper builds novel statistical models for multibiometric systems using geometric and multinomial distributions. These models are generic as they are only based on the similarity scores produced by a recognition system. They predict the bounds on the range of indices within which a test subject is likely to be present in a sorted set of similarity scores. These bounds are then used in the multibiometric recognition system to predict a smaller subset of subjects from the database as probable candidates for a given test subject. Experimental results show that the proposed models enhance the recognition rate beyond the underlying matching algorithms for multiple face views, fingerprints, palm prints, irises and their combinations.
  • Keywords
    Object recognition , BIOMETRICS , Modeling and prediction , Statistical models
  • Journal title
    PATTERN RECOGNITION
  • Serial Year
    2014
  • Journal title
    PATTERN RECOGNITION
  • Record number

    1736680