Title of article
The mechanical stress–strain properties of single electrospun collagen type I nanofibers
Author/Authors
Carlisle، نويسنده , , C.R. and Coulais، نويسنده , , C. and Guthold، نويسنده , , M.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2010
Pages
7
From page
2997
To page
3003
Abstract
Knowledge of the mechanical properties of electrospun fibers is important for their successful application in tissue engineering, material composites, filtration and drug delivery. In particular, electrospun collagen has great potential for biomedical applications due to its biocompatibility and promotion of cell growth and adhesion. Using a combined atomic force microscopy (AFM)/optical microscopy technique, the single fiber mechanical properties of dry, electrospun collagen type I were determined. The fibers were electrospun from a 80 mg ml−1 collagen solution in 1,1,1,3,3,3-hexafluro-2-propanol and collected on a striated surface suitable for lateral force manipulation by AFM. The small strain modulus, calculated from three-point bending analysis, was 2.82 GPa. The modulus showed significant softening as the strain increased. The average extensibility of the fibers was 33% of their initial length, and the average maximum stress (rupture stress) was 25 MPa. The fibers displayed significant energy loss and permanent deformations above 2% strain.
Keywords
AFM , Collagen , mechanical properties , biomaterial , electrospinning
Journal title
Acta Biomaterialia
Serial Year
2010
Journal title
Acta Biomaterialia
Record number
1754077
Link To Document