• Title of article

    A diffusion gradient optimization framework for spinal cord diffusion tensor imaging

  • Author/Authors

    Majumdar، نويسنده , , Shantanu and Zhu، نويسنده , , David C. and Udpa، نويسنده , , Satish S. and Raguin، نويسنده , , L. Guy، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2011
  • Pages
    16
  • From page
    789
  • To page
    804
  • Abstract
    The uncertainty in the estimation of diffusion model parameters in diffusion tensor imaging (DTI) can be reduced by optimally selecting the diffusion gradient directions utilizing some prior structural information. This is beneficial for spinal cord DTI, where the magnetic resonance images have low signal-to-noise ratio and thus high uncertainty in diffusion model parameter estimation. Presented is a gradient optimization scheme based on D-optimality, which reduces the overall estimation uncertainty by minimizing the Rician Cramer-Rao lower bound of the variance of the model parameter estimates. The tensor-based diffusion model for DTI is simplified to a four-parameter axisymmetric DTI model where diffusion transverse to the principal eigenvector of the tensor is assumed isotropic. Through simulations and experimental validation, we demonstrate that an optimized gradient scheme based on D-optimality is able to reduce the overall uncertainty in the estimation of diffusion model parameters for the cervical spinal cord and brain stem white matter tracts.
  • Keywords
    MRI , Cramer-Rao Lower Bound , rician noise , optimization , Spinal Cord , Diffusion Tensor Imaging
  • Journal title
    Magnetic Resonance Imaging
  • Serial Year
    2011
  • Journal title
    Magnetic Resonance Imaging
  • Record number

    1833167