Title of article
Mn1.5Co1.5O4−δ infiltrated yttria stabilized zirconia composite cathodes for intermediate-temperature solid oxide fuel cells
Author/Authors
Liu، نويسنده , , Xuejiao and Han، نويسنده , , Da and Wu، نويسنده , , Hao and Meng، نويسنده , , Xie and Zeng، نويسنده , , Fanrong and Zhan، نويسنده , , Zhongliang، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2013
Pages
6
From page
16563
To page
16568
Abstract
The composite cathodes of yttria stabilized zirconia (YSZ) and Mn1.5Co1.5O4 (MCO) are prepared by infiltration of the MCO oxides into porous YSZ backbones using aqueous solutions of the corresponding nitrate salts. Calcinations at 850 °C promote the formation of the MCO spinel oxide and yield nano-scale catalyst coatings on the YSZ pore walls. Impedance measurements on the symmetric MCO–YSZ cathode fuel cells show that the lowest polarization resistance in air at 800 °C is 0.43 Ω cm2 for the MCO impregnated YSZ composite at the MCO volume loading of 13.5%. Analysis of the impedance spectra suggest that the oxygen reduction kinetics is probably limited by double ionization of the adsorbed oxygen atoms or charge transfer at the triple-phase boundaries. Furthermore, introducing the oxide ion conductor of samarium-doped ceria as a second component in the coated catalysts yields much lower polarization resistances, e.g., 0.15 Ω cm2 at 800 °C.
Keywords
Mn1.5Co1.5O4 catalysts , Cathodes , IMPREGNATION , Nanostructure , solid oxide fuel cells
Journal title
International Journal of Hydrogen Energy
Serial Year
2013
Journal title
International Journal of Hydrogen Energy
Record number
1866339
Link To Document