Title of article
Precipitation forecasting by using wavelet-support vector machine conjunction model
Author/Authors
Kisi، نويسنده , , Ozgur and Cimen، نويسنده , , Mesut، نويسنده ,
Pages
10
From page
783
To page
792
Abstract
A new wavelet-support vector machine conjunction model for daily precipitation forecast is proposed in this study. The conjunction method combining two methods, discrete wavelet transform and support vector machine, is compared with the single support vector machine for one-day-ahead precipitation forecasting. Daily precipitation data from Izmir and Afyon stations in Turkey are used in the study. The root mean square errors (RMSE), mean absolute errors (MAE), and correlation coefficient (R) statistics are used for the comparing criteria. The comparison results indicate that the conjunction method could increase the forecast accuracy and perform better than the single support vector machine. For the Izmir and Afyon stations, it is found that the conjunction models with RMSE=46.5 mm, MAE=13.6 mm, R=0.782 and RMSE=21.4 mm, MAE=9.0 mm, R=0.815 in test period is superior in forecasting daily precipitations than the best accurate support vector regression models with RMSE=71.6 mm, MAE=19.6 mm, R=0.276 and RMSE=38.7 mm, MAE=14.2 mm, R=0.103, respectively. The ANN method was also employed for the same data set and found that there is a slight difference between ANN and SVR methods.
Keywords
Precipitation , Discrete wavelet transform , Support vector machine , forecast
Journal title
Astroparticle Physics
Record number
2047334
Link To Document