Title of article
Genomic organization and mRNA expression of manganese superoxide dismutase (Mn-SOD) from Hemibarbus mylodon (Teleostei, Cypriniformes)
Author/Authors
Cho، نويسنده , , Young Sun and Lee، نويسنده , , Sang Yoon and Bang، نويسنده , , In Chul and Kim، نويسنده , , Dong Soo and Nam، نويسنده , , Yoon Kwon، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2009
Pages
6
From page
571
To page
576
Abstract
The genomic structure of manganese superoxide dismutase (Mn-SOD) was characterized in Hemibarbus mylodon (Teleostei, Cypriniformes), an endangered freshwater fish species, and changes in Mn-SOD mRNA expression in response to various stimuli, such as challenge with lipopolysaccharide (LPS), bacteria, or heavy metals, were examined. H. mylodon Mn-SOD possesses well-conserved features of vertebrate Mn-SODs, including its homologous quinquepartite gene structure (five exons interrupted by four introns) and high sequence identity with vertebrate orthologs in coding regions, including a typical eukaryotic Mn-SOD signature. The 5′-regulatory upstream region of the H. mylodon Mn-SOD gene lacked a canonical TATA sequence; however, it displayed various transcription factor binding elements that may be involved in immune and stress responses, as well as the modulation of enzymes that mediate the metabolism of metals and other xenobiotics. Bioinformatic analysis of Mn-SOD genes from fish and mammalian genome databases revealed chromosomal synteny of the Mn-SOD locus in the vertebrate lineage. Mn-SOD transcripts were ubiquitously detected in diverse tissues with variable levels of basal expression using an RT-PCR assay. Mn-SOD expression in the liver and kidney were significantly modulated by injection of LPS (1, 5, or 10 μg g−1 body weight), Edwardsiella tarda challenge (5 × 103 or 5 × 105 cells/fish), and heavy metal exposure (Cd, Cu, or Zn at 5 μM). Results from this study suggest that Mn-SOD plays an important role in the host defence against oxidative damage caused by infection-mediated inflammation and/or toxicant related stress in this species.
Keywords
Gene expression , Bacterial and LPS challenge , Hemibarbus mylodon , Mn-SOD , Heavy metal exposure , gene structure
Journal title
Fish and Shellfish Immunology
Serial Year
2009
Journal title
Fish and Shellfish Immunology
Record number
2108756
Link To Document