• Title of article

    Maximum likelihood estimation and uniform inference with sporadic identification failure

  • Author/Authors

    Andrews، نويسنده , , Donald W.K. and Cheng، نويسنده , , Xu، نويسنده ,

  • Issue Information
    دوفصلنامه با شماره پیاپی سال 2013
  • Pages
    21
  • From page
    36
  • To page
    56
  • Abstract
    This paper analyzes the properties of a class of estimators, tests, and confidence sets (CSs) when the parameters are not identified in parts of the parameter space. Specifically, we consider estimator criterion functions that are sample averages and are smooth functions of a parameter θ . This includes log likelihood, quasi-log likelihood, and least squares criterion functions. ermine the asymptotic distributions of estimators under lack of identification and under weak, semi-strong, and strong identification. We determine the asymptotic size (in a uniform sense) of standard t and quasi-likelihood ratio (QLR) tests and CSs. We provide methods of constructing QLR tests and CSs that are robust to the strength of identification. sults are applied to two examples: a nonlinear binary choice model and the smooth transition threshold autoregressive (STAR) model.
  • Keywords
    Identification , likelihood , nonlinear models , Test , weak identification , Smooth transition threshold autoregression , Asymptotic size , Binary choice , confidence set , estimator
  • Journal title
    Journal of Econometrics
  • Serial Year
    2013
  • Journal title
    Journal of Econometrics
  • Record number

    2129239