Title of article
Model averaging estimation of generalized linear models with imputed covariates
Author/Authors
Dardanoni، نويسنده , , Valentino and De Luca، نويسنده , , Giuseppe and Modica، نويسنده , , Salvatore and Peracchi، نويسنده , , Franco، نويسنده ,
Issue Information
دوفصلنامه با شماره پیاپی سال 2015
Pages
12
From page
452
To page
463
Abstract
We address the problem of estimating generalized linear models when some covariate values are missing but imputations are available to fill-in the missing values. This situation generates a bias-precision trade-off in the estimation of the model parameters. Extending the generalized missing-indicator method proposed by Dardanoni et al. (2011) for linear regression, we handle this trade-off as a problem of model uncertainty using Bayesian averaging of classical maximum likelihood estimators (BAML). We also propose a block model averaging strategy that incorporates information on the missing-data patterns and is computationally simple. An empirical application illustrates our approach.
Keywords
Share , Bayesian averaging of maximum likelihood estimators , missing covariates , Model Averaging , Generalized Linear Models , Generalized missing-indicator method
Journal title
Journal of Econometrics
Serial Year
2015
Journal title
Journal of Econometrics
Record number
2129705
Link To Document