• Title of article

    Bahadur representation of linear kernel quantile estimator of VaR under assumptions

  • Author/Authors

    Wei، نويسنده , , Xianglan and Yang، نويسنده , , Shanchao and Yu، نويسنده , , Keming and Yang، نويسنده , , Xin and Xing، نويسنده , , Guodong، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2010
  • Pages
    15
  • From page
    1620
  • To page
    1634
  • Abstract
    In this paper, it is illustrated that the linear kernel quantile estimator proposed by Parzen (1979) is a reasonable estimator for VaR. Note that Yang (1985) established a Bahadur representation of the estimator in senses of convergence in probability for independent random variables. We extend the result to the case of α -mixing random variable sequence, and it is in senses of almost surely convergence with the rate log − τ n . Moreover, we get the strong consistence of the VaR estimator and its convergence rate, and mean square error of the estimator.
  • Keywords
    ? -mixing , mean square error , Kernel quantile estimator , Strong consistence , VAR , Bahadur representation
  • Journal title
    Journal of Statistical Planning and Inference
  • Serial Year
    2010
  • Journal title
    Journal of Statistical Planning and Inference
  • Record number

    2220647