Title of article
Bahadur representation of linear kernel quantile estimator of VaR under assumptions
Author/Authors
Wei، نويسنده , , Xianglan and Yang، نويسنده , , Shanchao and Yu، نويسنده , , Keming and Yang، نويسنده , , Xin and Xing، نويسنده , , Guodong، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2010
Pages
15
From page
1620
To page
1634
Abstract
In this paper, it is illustrated that the linear kernel quantile estimator proposed by Parzen (1979) is a reasonable estimator for VaR. Note that Yang (1985) established a Bahadur representation of the estimator in senses of convergence in probability for independent random variables. We extend the result to the case of α -mixing random variable sequence, and it is in senses of almost surely convergence with the rate log − τ n . Moreover, we get the strong consistence of the VaR estimator and its convergence rate, and mean square error of the estimator.
Keywords
? -mixing , mean square error , Kernel quantile estimator , Strong consistence , VAR , Bahadur representation
Journal title
Journal of Statistical Planning and Inference
Serial Year
2010
Journal title
Journal of Statistical Planning and Inference
Record number
2220647
Link To Document