• Title of article

    Thermal rate constants of the pyrolysis of n-Heptane

  • Author/Authors

    Ding، نويسنده , , Junxia and Zhang، نويسنده , , Liang and Han، نويسنده , , Keli، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2011
  • Pages
    11
  • From page
    2314
  • To page
    2324
  • Abstract
    Rate coefficients for straight chain alkane and free radical decomposition are important in combustion process. This work reports a theoretical study of the pyrolysis of n-Heptane. The barrier heights of the C−C fission reaction, β-scission reaction and H-atom abstraction reaction, as well as geometrical parameters of the reactants, products, and transition states involved in the decomposition of n-Heptane have been calculated at the CCSD(T)/6–311G(d,p)//B3LYP/6–311G(d,p) level. The temperature-dependent rate constants for individual reaction have been obtained in the temperature range of 200–3000 K using variational transition state theory and Rice–Ramsperger–Kassel–Marcus theory. The pressure dependence rate constants have been treated by one-dimensional master equation calculations at different pressure as well as high-pressure limit. In order to facilitate the use of the reaction rate constants for chemical kinetics modeling, all of the individual rate constants were fitted to a modified three-parameter Arrhenius expression: k(T) = ATn exp(−Eb/RT) at various pressures. Some of the predicted rate constants are in reasonable agreement with the available experimental and previous theoretical results. The pyrolysis mechanism and RRKM-based rate constants presented in this paper may be used in high accuracy combustion modeling.
  • Keywords
    n-Heptane , Pyrolysis , RRKM , Rate coefficients
  • Journal title
    Combustion and Flame
  • Serial Year
    2011
  • Journal title
    Combustion and Flame
  • Record number

    2275896