• Title of article

    Low cost RISC implementation of intelligent ultra fast charger for Ni–Cd battery

  • Author/Authors

    Petchjatuporn، نويسنده , , Panom and Sirisuk، نويسنده , , Phaophak and Khaehintung، نويسنده , , Noppadol and Sunat، نويسنده , , Khamron and Wicheanchote، نويسنده , , Phinyo and Kiranon، نويسنده , , Wiwat، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2008
  • Pages
    8
  • From page
    185
  • To page
    192
  • Abstract
    This paper presents a low cost reduced instruction set computer (RISC) implementation of an intelligent ultra fast charger for a nickel–cadmium (Ni–Cd) battery. The charger employs a genetic algorithm (GA) trained generalized regression neural network (GRNN) as a key to ultra fast charging while avoiding battery damage. The tradeoff between mean square error (MSE) and the computational burden of the GRNN is addressed. Besides, an efficient technique is proposed for estimation of a radial basis function (RBF) in the GRNN. Hardware realization based upon the techniques is discussed. Experimental results with commercial Ni–Cd batteries reveal that while the proposed charger significantly reduces the charging time, it scarcely deteriorates the battery energy storage capability when compared with the conventional charger.
  • Keywords
    Battery Charger , Ni–Cd battery , Fast charging , GA , GRNN , RBF
  • Journal title
    Energy Conversion and Management
  • Serial Year
    2008
  • Journal title
    Energy Conversion and Management
  • Record number

    2333547