• Title of article

    Experimental observations of lithium as a plasma-facing surface in the DIII-D tokamak divertor

  • Author/Authors

    Whyte، نويسنده , , D.G. and Evans، نويسنده , , T.E. and Wong، نويسنده , , C.P.C. and West، نويسنده , , W.P. and Bastasz، نويسنده , , Joanna R. and Allain، نويسنده , , J.P. and Brooks، نويسنده , , J.N.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2004
  • Pages
    15
  • From page
    133
  • To page
    147
  • Abstract
    Several experiments exposing a 5 cm2 solid and liquid lithium to the divertor plasma of the DIII-D are described. The divertor plasma strikepoint cleans and conditions the initially solid lithium surface. The effective sputtering rate and transport of lithium was found to be acceptable. Lithium has a sputtering yield of solid lithium <10% for Te ∼20 eV. The sputtered lithium is ionized in a short distance from the divertor and promptly redeposited. Experiments and modeling show the sputtered lithium is well shielded by the divertor plasma. The behavior of the liquefied lithium was dominated by its macroscopic movement and injection into the plasma caused by J × B magnetohydrodynamic (MHD) forces. Plasma MHD events, such as edge localized modes (ELMs) and locked modes, are found to provide simultaneously the energy to melt the lithium and the transiently high scrape-off layer (SOL) currents to cause the J × B motion. The macroscopic removal of lithium from the small sample, comprising <1/1000th of the wetted divertor area, leads to measurable contamination of the core plasma by lithium. The quantity of injected lithium was sufficient to degrade confinement and/or cause disruptions. These observations indicate that surface stability and MHD motion are the most critical issues with regard to liquid-metal divertor surfaces.
  • Keywords
    Fusion , Plasma-facing component , Divertor , lithium , liquid , MHD , Disruption
  • Journal title
    Fusion Engineering and Design
  • Serial Year
    2004
  • Journal title
    Fusion Engineering and Design
  • Record number

    2351900