Title of article
Personal bankruptcy prediction by mining credit card data
Author/Authors
Xiong، نويسنده , , Tengke and Wang، نويسنده , , Shengrui and Mayers، نويسنده , , André and Monga، نويسنده , , Ernest، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2013
Pages
12
From page
665
To page
676
Abstract
A personal bankruptcy prediction system running on credit card data is proposed. Personal bankruptcy, which usually results in significant losses to creditors, is a rapidly increasing yet little understood phenomenon. The most commonly used methods in personal bankruptcy prediction are credit scoring models. Some data mining models have also been investigated in this domain. Neither the scoring models nor the existing data mining methods adequately take sequence information in credit card data into account. In our system, sequence patterns, obtained by developing sequence mining techniques and applying them to credit card data from one major Canadian bank, are employed as main predictors. The mined sequence patterns, which we refer to as bankruptcy features, are represented in low-dimensional vector space. From the new feature space, which can be extended with some existing prediction-capable features (e.g., credit score), a support vector machine (SVM) classifier is built to combine these mined and already existing features. Our system is readily comprehensible and demonstrates promising prediction performance.
Keywords
Personal bankruptcy prediction , DATA MINING , Sequence mining
Journal title
Expert Systems with Applications
Serial Year
2013
Journal title
Expert Systems with Applications
Record number
2353008
Link To Document