• Title of article

    Duplication forgery detection using improved DAISY descriptor

  • Author/Authors

    Guo، نويسنده , , Jingming and Liu، نويسنده , , Yun-Fu and Wu، نويسنده , , Zong-Jhe، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2013
  • Pages
    8
  • From page
    707
  • To page
    714
  • Abstract
    Copy-move is one of the simple and effective operations to create digital image forgeries due to the gradually evolved image processing tools. In recent years, SIFT-based approach is widely applied to detect copy-move. Although these methods are proved to have robust performance in this field, when the cloned region is of uniform texture, this kind of methods normally failed to detect such forgeries due to insufficient or even none keypoints located. Thus, in this paper, an effective manner based on adaptive non-maximal suppression and rotation-invariant DAISY descriptor is proposed, and which enables the capability to detect a cloned region even undergone several geometric changes, such as rotation, scaling, JPEG compression, and Gaussian noise. Extensive experimental results are presented to confirm that the technique is effective to identify the altered area.
  • Keywords
    Digital image forensics , image matching , Copy-move attack , Authenticity verification , duplication
  • Journal title
    Expert Systems with Applications
  • Serial Year
    2013
  • Journal title
    Expert Systems with Applications
  • Record number

    2353015