• Title of article

    Single Classifier-based Multiple Classification Scheme for weak classifiers: An experimental comparison

  • Author/Authors

    Ko، نويسنده , , Albert Hung-Ren and Sabourin، نويسنده , , Robert، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2013
  • Pages
    17
  • From page
    3606
  • To page
    3622
  • Abstract
    In this paper, we propose a Single Classifier-based Multiple Classification Scheme (SMCS) that uses only a single classifier to generate multiple classifications for a given test data point. The SMCS does not require the presence of multiple classifiers, and generates diversity through the creation of pseudo test samples. The pseudo test sample generation mechanism allows the SMCS to adapt to dynamic environments without multiple classifier training. Moreover, because of the presence of multiple classifications, classification combination schemes, such as majority voting, can be applied, and so the mechanism may improve the recognition rate in a manner similar to that of Multiple Classifier Systems (MCS). The experimental results confirm the validity of the proposed SMCS as applicable to many classification systems. Even without parameter selection, the average performance of the SMCS is still comparable to that of Bagging or Boosting. Moreover, the SMCS and the traditional MCS scheme are not mutually exclusive, and the SMCS can be applied along with traditional MCS, such as Bagging and Boosting.
  • Keywords
    Ensemble of classifiers , Diversity , Multiple classifier system , Bagging , Multiple Classification Scheme , Boosting
  • Journal title
    Expert Systems with Applications
  • Serial Year
    2013
  • Journal title
    Expert Systems with Applications
  • Record number

    2353526