• Title of article

    A NOTE ON SOME LOWER BOUNDS OF THE LAPLACIAN ENERGY OF A GRAPH

  • Author/Authors

    MATEJIC, MARJAN , MILOSEVIC, PREDRAG , MILOVANOVIC, EMINA , ALI, AKBAR

  • Pages
    7
  • From page
    13
  • To page
    19
  • Abstract
    For a simple connected graph G of order n and size m, the Laplacian energy of G is dened as LE(G) = Σn i=1 ji - 2m n j where 1; 2; : : : ; n-1; n are the Laplacian eigenvalues of G satisfying 1 2 n-1 > n = 0. In this note, some new lower bounds on the graph invariant LE(G) are derived. The obtained results are compared with some already known lower bounds of LE(G).
  • Keywords
    rst Zagreb index , Laplacian energy (of a graph) , Laplacian eigenvalue
  • Journal title
    Astroparticle Physics
  • Serial Year
    2019
  • Record number

    2450899