• Title of article

    Almost specification ‎and ‎renewality‎ in spacing shifts

  • Author/Authors

    Ahmadi Dastjerdi ، D. - ‎University of Guilan‎ , Dabbaghian Amiri ، M. - ‎University of Guilan‎

  • Pages
    12
  • From page
    885
  • To page
    896
  • Abstract
    ‎Let $(Sigma_P,sigma_P) be the space of a spacing shifts where $Psubset mathbb{N}_0=mathbb{N}cup{0}and Sigma_P={sin{0,1}^{mathbb{N}_0}: ‎s_i=s_j=1 mbox{ if } |ij|in P cup{0}} and sigma_P the shift map‎. ‎We will show that Sigma_P is mixing if and only if it has almost specification property with at least two periodic points‎. ‎Moreover‎, ‎we show that if h(sigma_P)=0‎, ‎then Sigma_P is almost specified and if h(sigma_P) 0 and Sigma_P is almost specified‎, ‎then it is weak mixing‎. ‎Also‎, ‎some sufficient conditions for a coded Sigma_P being renewal or uniquely decipherable is given‎. ‎At last we will show that here are only two conjugacies from a transitive Sigma_P to a subshift of {0,1}^{mathbb{N}_0}‎.
  • Keywords
    Spacing shifts , almost specification , renewal , uniquely decipherable
  • Journal title
    Bulletin of the Iranian Mathematical Society
  • Serial Year
    2017
  • Journal title
    Bulletin of the Iranian Mathematical Society
  • Record number

    2456119