• Title of article

    Automotive Wheel Optimization to Enhance the Fatigue Life

  • Author/Authors

    Beigzadeh, S M.Sc. Graduated - School of Automotive Engineering - Iran University of Science and Technology, Tehran , Marzbanrad, J Associate Professor - School of Automotive Engineering - Iran University of Science and Technology, Tehran

  • Pages
    20
  • From page
    2739
  • To page
    2758
  • Abstract
    Nowadays, lightweight automotive component design, regarding fuel consumption, environmental pollutants and manufacturing costs, is one of the main issues in the automotive societies. In addition, considering safety reasons, the durability of the automotive components, as one of the most important design requirements should be guaranteed. In this paper, a twostep optimization process including topology and shape optimization of an automotive wheel, as one of the most significant chassis components, is studied. At first, topology optimization method with volume and fatigue life constraints is used to obtain the optimal initial lightweight design, followed by shape optimization technique to improve the fatigue life. The results show 31.841% weight and 33.047% compliance reduction by topology and also 652.33% average minimum fatigue life enhancement, by the shape optimization. Therefore, the proposed two-step optimization method is qualified in designing the lightweight automotive wheel. The method used in this study can be a reference for optimization of other mechanical components.
  • Keywords
    Lightweight design , Automotive wheel , Optimization , Fatigue
  • Journal title
    Astroparticle Physics
  • Serial Year
    2018
  • Record number

    2467331