• Title of article

    On finite-by-nilpotent profinite groups

  • Author/Authors

    Detomi, Eloisa Dipartimento di Ingegneria dellInformazione - DEI - Universitagrave - Italy , Morigi, Marta Dipartimento di Matematica - Università - di Bologna - Italy

  • Pages
    7
  • From page
    223
  • To page
    229
  • Abstract
    Let γn=[x1,…,xn] be the nth lower central word. Suppose that G is a profinite group where the conjugacy classes xγn(G) contains less than 2ℵ0 elements for any x∈G. We prove that then γn+1(G) has finite order. This generalizes the much celebrated theorem of B. H. Neumann that says that the commutator subgroup of a BFC-group is finite. Moreover, it implies that a profinite group G is finite-by-nilpotent if and only if there is a positive integer n such that xγn(G) contains less than 2ℵ0 elements, for any x∈G.
  • Keywords
    Conjucagy classes , verbal subgroups , profinite groups , FC-groups
  • Journal title
    International Journal of Group Theory
  • Serial Year
    2020
  • Record number

    2526081