Title of article
Simultaneous motion estimation and segmentation
Author/Authors
Chang، نويسنده , , M.M.، نويسنده , , Tekalp، نويسنده , , A.M.، نويسنده , , Sezan Orak، نويسنده , , M.I.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 1997
Pages
8
From page
1326
To page
1333
Abstract
We present a Bayesian framework that combines motion
(optical flow) estimation and segmentation based on a representation
of the motion field as the sum of a parametric field and a residual
field. The parameters describing the parametric component are found
by a least squares procedure given the best estimates of the motion
and segmentation fields. The motion field is updated by estimating the
minimum-norm residual field given the best estimate of the parametric
field, under the constraint that motion field be smooth within each
segment. The segmentation field is updated to yield the minimum-norm
residual field given the best estimate of the motion field, using Gibbsian
priors. The solution to successive optimization problems are obtained
using the highest confidence first (HCF) or iterated conditional mode (ICM)
optimization methods. Experimental results on real video are shown.
Keywords
Bayesian methods , Motion estimation , motion segmentation , parametric motion models.
Journal title
IEEE TRANSACTIONS ON IMAGE PROCESSING
Serial Year
1997
Journal title
IEEE TRANSACTIONS ON IMAGE PROCESSING
Record number
395917
Link To Document