• Title of article

    Bayesian and regularization methods for hyperparameter estimation in image restoration

  • Author/Authors

    Molina، نويسنده , , R.، نويسنده , , Katsaggelos، نويسنده , , A.K.، نويسنده , , Mateos، نويسنده , , J. ، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 1999
  • Pages
    16
  • From page
    231
  • To page
    246
  • Abstract
    In this paper, we propose the application of the hierarchical Bayesian paradigm to the image restoration problem. We derive expressions for the iterative evaluation of the two hyperparameters applying the evidence and maximum a posteriori (MAP) analysis within the hierarchical Bayesian paradigm. We show analytically that the analysis provided by the evidence approach is more realistic and appropriate than the MAP approach for the image restoration problem. We furthermore study the relationship between the evidence and an iterative approach resulting from the set theoretic regularization approach for estimating the two hyperparameters, or their ratio, defined as the regularization parameter. Finally the proposed algorithms are tested experimentally.
  • Keywords
    Hierarchical Bayesian models , image restoration , Parameter estimation , regularization.
  • Journal title
    IEEE TRANSACTIONS ON IMAGE PROCESSING
  • Serial Year
    1999
  • Journal title
    IEEE TRANSACTIONS ON IMAGE PROCESSING
  • Record number

    396152