• Title of article

    Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement

  • Author/Authors

    Nguyen، نويسنده , , N.، نويسنده , , Milanfar، نويسنده , , P.، نويسنده , , Golub، نويسنده , , G.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2001
  • Pages
    10
  • From page
    1299
  • To page
    1308
  • Abstract
    In many image restoration/resolution enhancement applications, the blurring process, i.e., point spread function (PSF) of the imaging system, is not known or is known only to within a set of parameters.We estimate these PSF parameters for this ill-posed class of inverse problem from raw data, along with the regularization parameters required to stabilize the solution, using the generalized cross-validation method (GCV). We propose efficient approximation techniques based on the Lanczos algorithm and Gauss quadrature theory, reducing the computational complexity of the GCV. Data-driven PSF and regularization parameter estimation experiments with synthetic and real image sequences are presented to demonstrate the effectiveness and robustness of our method.
  • Keywords
    Blind restoration , Blur identification , generalizedcross-validation , Quadrature rules , superresolution.
  • Journal title
    IEEE TRANSACTIONS ON IMAGE PROCESSING
  • Serial Year
    2001
  • Journal title
    IEEE TRANSACTIONS ON IMAGE PROCESSING
  • Record number

    396653