Title of article
Pattern recognition applications for power system disturbance classification
Author/Authors
Gaouda، نويسنده , , A.M.، نويسنده , , Kanoun، نويسنده , , S.H.، نويسنده , , Salama، نويسنده , , M.M.A.، نويسنده , , Chikhani، نويسنده , , A.Y.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2002
Pages
7
From page
677
To page
683
Abstract
This paper presents an automated online disturbance
classification technique. This technique is based on wavelet
multiresolution analysis and pattern recognition techniques. The
wavelet-multiresolution transform is introduced as a powerful tool
for feature extraction in order to classify different disturbances.
Minimum Euclidean distance, -nearest neighbor, and neural
network classifiers are used to evaluate the efficiency of the
extracted features.
Keywords
power quality , wavelet analysis. , nearest neighbor , minimum Euclidean distance , multiresolution signal decomposition , neural networkrecognition techniques
Journal title
IEEE TRANSACTIONS ON POWER DELIVERY
Serial Year
2002
Journal title
IEEE TRANSACTIONS ON POWER DELIVERY
Record number
400389
Link To Document