• Title of article

    Pattern recognition applications for power system disturbance classification

  • Author/Authors

    Gaouda، نويسنده , , A.M.، نويسنده , , Kanoun، نويسنده , , S.H.، نويسنده , , Salama، نويسنده , , M.M.A.، نويسنده , , Chikhani، نويسنده , , A.Y.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2002
  • Pages
    7
  • From page
    677
  • To page
    683
  • Abstract
    This paper presents an automated online disturbance classification technique. This technique is based on wavelet multiresolution analysis and pattern recognition techniques. The wavelet-multiresolution transform is introduced as a powerful tool for feature extraction in order to classify different disturbances. Minimum Euclidean distance, -nearest neighbor, and neural network classifiers are used to evaluate the efficiency of the extracted features.
  • Keywords
    power quality , wavelet analysis. , nearest neighbor , minimum Euclidean distance , multiresolution signal decomposition , neural networkrecognition techniques
  • Journal title
    IEEE TRANSACTIONS ON POWER DELIVERY
  • Serial Year
    2002
  • Journal title
    IEEE TRANSACTIONS ON POWER DELIVERY
  • Record number

    400389