• Title of article

    Topology optimization of acoustic-structure interaction problems using a mixed finite element formulation

  • Author/Authors

    Gil Ho Yoon، نويسنده , , Jakob Sondergaard Jensen، نويسنده , , Ole Sigmund، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2007
  • Pages
    27
  • From page
    1049
  • To page
    1075
  • Abstract
    The paper presents a gradient-based topology optimization formulation that allows to solve acoustic– structure (vibro-acoustic) interaction problems without explicit boundary interface representation. In acoustic–structure interaction problems, the pressure and displacement fields are governed by Helmholtz equation and the elasticity equation, respectively. Normally, the two separate fields are coupled by surface-coupling integrals, however, such a formulation does not allow for free material re-distribution in connection with topology optimization schemes since the boundaries are not explicitly given during the optimization process. In this paper we circumvent the explicit boundary representation by using a mixed finite element formulation with displacements and pressure as primary variables (a u/p-formulation). The Helmholtz equation is obtained as a special case of the mixed formulation for the elastic shear modulus equating to zero. Hence, by spatial variation of the mass density, shear and bulk moduli we are able to solve the coupled problem by the mixed formulation. Using this modelling approach, the topology optimization procedure is simply implemented as a standard density approach. Several two-dimensional acoustic–structure problems are optimized in order to verify the proposed method. Copyright q 2006 John Wiley & Sons, Ltd.
  • Keywords
    Topology optimization , Acoustic–structure interaction , Mixed formulation
  • Journal title
    International Journal for Numerical Methods in Engineering
  • Serial Year
    2007
  • Journal title
    International Journal for Numerical Methods in Engineering
  • Record number

    426030