• Title of article

    Buckling pressure of “pumpkin” balloons

  • Author/Authors

    M. Pagitz، نويسنده , , S. Pellegrino، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2007
  • Pages
    24
  • From page
    6963
  • To page
    6986
  • Abstract
    This paper presents a computational study of the critical buckling pressure of pumpkin balloons, which consist of a thin, compliant membrane constrained by stiff meridional tendons. The n-fold symmetric shape of a pumpkin balloon with n identical lobes is exploited by adopting a symmetry-adapted coordinate system, which leads to the tangent stiffness matrix in an efficient block-diagonal form; the smallest eigenvalue of a particular block leads to the buckling pressure for the balloon. Two different types of balloon design are considered. Extensive results are obtained for the buckling pressures of a set of 10 m diameter experimental balloons and also for an 80 m diameter flight balloon. The key findings are as follows: the same type of buckling mode, forming four circumferential waves is critical for most of the balloons that have been analysed; balloons with flatter lobes are more stable, and the buckling pressure varies with an inverse power-law of the number of lobes; increasing the Young’s modulus, the Poisson’s ratio of the membrane, or the diameter of the end fitting has the effect of increasing the buckling pressure; but increasing the axial stiffness of the tendons has the effect of decreasing the buckling pressure.
  • Keywords
    Membrane structures , Isotensoid , Scientific balloons , Symmetry transformation , Buckling
  • Journal title
    International Journal of Solids and Structures
  • Serial Year
    2007
  • Journal title
    International Journal of Solids and Structures
  • Record number

    449168