Title of article
Non-driving intersegmental knee moments in cycling computed using a model that includes three-dimensional kinematics of the shank/foot and the effect of simplifying assumptions
Author/Authors
Colin S. Gregersen، نويسنده , , M. L. Hull، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2003
Pages
11
From page
803
To page
813
Abstract
Assessing the importance of non-driving intersegmental knee moments (i.e. varus/valgus and internal/external axial moments) on over-use knee injuries in cycling requires the use of a three-dimensional (3-D) model to compute these loads. The objectives of this study were: (1) to develop a complete, 3-D model of the lower limb to calculate the 3-D knee loads during pedaling for a sample of the competitive cycling population, and (2) to examine the effects of simplifying assumptions on the calculations of the non-driving knee moments. The non-driving knee moments were computed using a complete 3-D model that allowed three rotational degrees of freedom at the knee joint, included the 3-D inertial loads of the shank/foot, and computed knee loads in a shank-fixed coordinate system. All input data, which included the 3-D segment kinematics and the six pedal load components, were collected from the right limb of 15 competitive cyclists while pedaling at 225 W and 90 rpm. On average, the peak varus and internal axial moments of 7.8 and 1.5 N m respectively occurred during the power stroke whereas the peak valgus and external axial moments of 8.1 and 2.5 N m respectively occurred during the recovery stroke. However, the non-driving knee moments were highly variable between subjects; the coefficients of variability in the peak values ranged from 38.7% to 72.6%. When it was assumed that the inertial loads of the shank/foot for motion out of the sagittal plane were zero, the root-mean-squared difference (RMSD) in the non-driving knee moments relative to those for the complete model was 12% of the peak varus/valgus moment and 25% of the peak axial moment. When it was also assumed that the knee joint was revolute with the flexion/extension axis perpendicular to the sagittal plane, the RMSD increased to 24% of the peak varus/valgus moment and 204% of the peak axial moment. Thus, the 3-D orientation of the shank segment has a major affect on the computation of the non-driving knee moments, while the inertial contributions to these loads for motions out of the sagittal plane are less important.
Journal title
Journal of Biomechanics
Serial Year
2003
Journal title
Journal of Biomechanics
Record number
451533
Link To Document