• Title of article

    Leukotriene receptor blocker montelukast protects against burn-induced oxidative injury of the skin and remote organs

  • Author/Authors

    G?ksel ?ener، نويسنده , , Levent Kabasakal، نويسنده , , ?ule Cetinel، نويسنده , , Gazi Contuk، نويسنده , , Nursal Gedik، نويسنده , , Berrak C. Ye?en، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2005
  • Pages
    10
  • From page
    587
  • To page
    596
  • Abstract
    Thermal injury elicits several systemic consequences, among them the systemic inflammatory response where the generation of reactive oxygen radicals and lipid peroxidation play important roles. In the present study, we investigated whether the leukotriene receptor blocker montelukast is protective against burn-induced remote organ injury. Under brief ether anaesthesia, shaved dorsum of the rats was exposed to 90 °C (burn group) or 25 °C (control group) water bath for 10 s. Montelukast (10 mg/kg) or saline was administered intraperitoneally immediately after and at the 12th hour of the burn injury. Rats were decapitated 24 h after burn injury and the tissue samples from lung, liver, kidney and skin were taken for the determination of malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity and collagen contents. Tissues were also examined microscopically. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) levels and creatinine, urea (BUN) concentrations were determined to assess liver and kidney function, respectively. Tumor necrosis factor-α (TNF-α) and lactate dehydrogenase (LDH) were also assayed in serum samples. Severe skin scald injury (30% of total body surface area) caused a significant decrease in GSH level, which was accompanied with significant increases in MDA level, MPO activity and collagen content of tissues. Similarly, serum ALT, AST and BUN levels, as well as LDH and TNF-α, were elevated in the burn group as compared to control group. On the other hand, montelukast treatment reversed all these biochemical indices, as well as histopathological alterations, which were induced by thermal trauma. Findings of the present study suggest that montelukast possesses an anti-inflammatory effect on burn-induced damage in remote organs and protects against oxidative organ damage by a neutrophil-dependent mechanism.
  • Keywords
    neutrophil , glutathione , Burn injury , oxidative damage , TNF-a , Montelukast
  • Journal title
    Burns
  • Serial Year
    2005
  • Journal title
    Burns
  • Record number

    470907