• Title of article

    Clustering huge data sets for parametric PET imaging

  • Author/Authors

    Chen، Kewei نويسنده , , Reiman، Eric M نويسنده , , Guo، Hongbin نويسنده , , Renaut، Rosemary نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2003
  • Pages
    -80
  • From page
    81
  • To page
    0
  • Abstract
    A new preprocessing clustering technique for quantification of kinetic PET data is presented. A two-stage clustering process, which combines a precluster and a classic hierarchical cluster analysis, provides data which are clustered according to a distance measure between time activity curves (TACs). The resulting clustered mean TACs can be used directly for estimation of kinetic parameters at the cluster level, or to span a vector space that is used for subsequent estimation of voxel level kinetics. The introduction of preclustering significantly reduces the overall time for clustering of multiframe kinetic data. The efficiency and superiority of the preclustering scheme combined with thresholding is validated by comparison of the results for clustering both with and without preclustering for FDG-PET brain data of 13 healthy subjects.
  • Keywords
    Dynamic PET , Clustering , Neuroimaging
  • Journal title
    BioSystems
  • Serial Year
    2003
  • Journal title
    BioSystems
  • Record number

    47682