• Title of article

    Asymptotic analysis and estimates of blow-up time for the radial symmetric semilinear heat equation in the open-spectrum case

  • Author/Authors

    Kavallaris، N. I. نويسنده , , Lacey، A. A. نويسنده , , Nikolopoulos، C. V. نويسنده , , Tzanetis، D. E. نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2007
  • Pages
    -1506
  • From page
    1507
  • To page
    0
  • Abstract
    We estimate the blow-up time for the reaction diffusion equation ut=(delta)u+ (lambda)f(u), for the radial symmetric case, where f is a positive, increasing and convex function growing fast enough at infinity. Here (lambda)>(lambda)*, where (lambda)* is the "extremal" (critical) value for (lambda), such that there exists an "extremal" weak but not a classical steady-state solution at (lambda)=(lambda)* with(iota) w(., (lambada))(infinity)(right arrow)(iota)infinity as 0<(lambda)(right arrow)(lambda)*-. Estimates of the blow-up time are obtained by using comparison methods. Also an asymptotic analysis is applied when f(s)=es, for (lambda)-(lambada)*<<1, regarding the form of the solution during blow-up and an asymptotic estimate of blow-up time is obtained. Finally, some numerical results are also presented.
  • Keywords
    reaction diffusion equation , blow-up time estimates , Boundary-layer theory
  • Journal title
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES
  • Serial Year
    2007
  • Journal title
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES
  • Record number

    48688