• Title of article

    Reactivation of inactivated endogenous proteolytic activities in phosphoric acid-etched dentine by etch-and-rinse adhesives

  • Author/Authors

    Annalisa Mazzoni، نويسنده , , David H. Pashley، نويسنده , , Yoshihiro Nishitani، نويسنده , , Lorenzo Breschi، نويسنده , , Ferdinando Mannello، نويسنده , , Leo Tj?derhane، نويسنده , , Manuel Toledano، نويسنده , , Edna L. Pashley، نويسنده , , Franklin R. Tay، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2006
  • Pages
    7
  • From page
    4470
  • To page
    4476
  • Abstract
    Auto-degradation of collagen matrices occurs in resin-infiltrated dentine by the slow action of host-derived matrix metalloproteinases. As phosphoric acid-etching inactivates these endogenous enzymes, it is puzzling how hybrid layers created by simplified etch-and-rinse adhesives can degrade in vivo. This study tested the null hypothesis that there are no differences in the relative proteolytic activities of mineralised dentine, acid-etched dentine, and etch-and-rinse adhesivetreated acid-etched dentine. Powdered dentine prepared from extracted human teeth was treated with 17% EDTA, 10% phosphoric acid, or with five simplified etch-and-rinse adhesives that were applied to 10% phosphoric acid-etched dentine. The gelatinolytic activity of the dentine powder was assayed using fluorescein-labelled gelatine. TEM examination of the air-dried, treated dentine powder was performed to confirm the presence of remnant mineralised dentine after acid-etching. 17% EDTA significantly reduced the relative proteolytic activity (73.2%) of the untreated mineralised dentine powder (control), while 10% phosphoric acid-etched dentine exhibited the highest reduction (98.1%). Treating the acid-etched dentine powder with any of the five simplified etch-and-rinse adhesives resulted in the reactivation of the proteolytic activity, with a significant negative linear correlation (P<0.05) between the increases in fluorescence and the corresponding pH values of the adhesives. It is concluded that simplified etch-and-rinse adhesives can reactivate endogenous enzymatic activities in dentine that are previously inactivated by phosphoric acid-etching. The amount of enzyme reactivated may even exceed the original quantity present in untreated mineralised dentine. This provides an explanation for the degradation of hybrid layers after acid-etched dentine matrices are infiltrated with these adhesives.
  • Keywords
    Acid-etched dentine , Fluorometric enzymatic assay , Etch-and-rinse adhesives , Proteolytic activity , Collagen degradation , fluorescence
  • Journal title
    Biomaterials
  • Serial Year
    2006
  • Journal title
    Biomaterials
  • Record number

    547109