• Title of article

    A parameter optimization method for radial basis function type models

  • Author/Authors

    Peng، Hui نويسنده , , T.، Ozaki, نويسنده , , V.، Haggan-Ozaki, نويسنده , , Y.، Toyoda, نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2003
  • Pages
    -431
  • From page
    432
  • To page
    0
  • Abstract
    This paper considers the nonlinear systems modeling problem for control. A structured nonlinear parameter optimization method (SNPOM) adapted to radial basis function (RBF) networks and an RBF network-style coefficients autoregressive model with exogenous variable model parameter estimation is presented. This is an offline nonlinear model parameter optimization method, depending partly on the Levenberg-Marquardt method for nonlinear parameter optimization and partly on the least-squares method using singular value decomposition for linear parameter estimation. When compared with some other algorithms, the SNPOM accelerates the computational convergence of the parameter optimization search process of RBF-type models. The usefulness of this approach is illustrated by means of several examples.
  • Keywords
    two-hidden-layer feedforward networks (TLFNs) , Learning capability , neural-network modularity , Storage capacity
  • Journal title
    IEEE TRANSACTIONS ON NEURAL NETWORKS
  • Serial Year
    2003
  • Journal title
    IEEE TRANSACTIONS ON NEURAL NETWORKS
  • Record number

    62823