Title of article
On Some Classes of Artinian Rings
Author/Authors
Dinh Van Huynh، نويسنده , , S. Tariq Rizvi، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 1999
Pages
21
From page
133
To page
153
Abstract
A module M is called a CS-module if every submodule of M is essential in a direct summand of M. A ring R is called CS-semisimple if every right R-module is CS. For a ring R, we show that:• is right artinian with Jacobson radical cube zero if every countably generated right -module is a direct sum of a projective module and a CS-module.• The following conditions are equivalent: (i) Every countably generated right -module is a direct sum of a projective module and a quasicontinuous module; and (ii) every right -module is a direct sum of a projective module and a quasi-injective module.
We describe the structure of rings in (2) and show that such a ring is not necessarily CS-semisimple.
Journal title
Journal of Algebra
Serial Year
1999
Journal title
Journal of Algebra
Record number
694820
Link To Document