• Title of article

    On the length of generalized fractions

  • Author/Authors

    Nguyen Tu Cuong، نويسنده , , Marcel Morales، نويسنده , , Le Thanh Nhan، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2003
  • Pages
    14
  • From page
    100
  • To page
    113
  • Abstract
    Let M be a finitely generated module over a Noetherian local ring with dimM=d. Let (x1,…,xd) be a system of parameters of M and (n1,…,nd) a set of positive integers. Consider the length of generalized fraction 1/(x1n1,…,xdnd,1) as a function in n1,…,nd. Sharp and Hamieh [J. Pure Appl. Algebra 38 (1985) 323–336] asked whether this function is a polynomial for n1,…,nd large enough. In this paper, we will give counterexamples to this question. We also study conditions on the system of parameters in order to show that the length of the generalized fraction 1/(x1n1,…,xdnd,1) is not a polynomial for n1,…,nd large enough.
  • Keywords
    multiplicity , Generalized fractions , Noetherian , Local cohomology , Artinian
  • Journal title
    Journal of Algebra
  • Serial Year
    2003
  • Journal title
    Journal of Algebra
  • Record number

    696247