Title of article
On the length of generalized fractions
Author/Authors
Nguyen Tu Cuong، نويسنده , , Marcel Morales، نويسنده , , Le Thanh Nhan، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2003
Pages
14
From page
100
To page
113
Abstract
Let M be a finitely generated module over a Noetherian local ring with dimM=d. Let (x1,…,xd) be a system of parameters of M and (n1,…,nd) a set of positive integers. Consider the length of generalized fraction 1/(x1n1,…,xdnd,1) as a function in n1,…,nd. Sharp and Hamieh [J. Pure Appl. Algebra 38 (1985) 323–336] asked whether this function is a polynomial for n1,…,nd large enough. In this paper, we will give counterexamples to this question. We also study conditions on the system of parameters in order to show that the length of the generalized fraction 1/(x1n1,…,xdnd,1) is not a polynomial for n1,…,nd large enough.
Keywords
multiplicity , Generalized fractions , Noetherian , Local cohomology , Artinian
Journal title
Journal of Algebra
Serial Year
2003
Journal title
Journal of Algebra
Record number
696247
Link To Document