• Title of article

    Decomposition of the lattice vertex operator algebra

  • Author/Authors

    Ching Hung Lam، نويسنده , , Hiromichi Yamada، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2004
  • Pages
    11
  • From page
    614
  • To page
    624
  • Abstract
    Motivated by the work of Dong et al. [Associative subalgebras of Griess algebra and related topics, in: J. Ferrar, K. Harada (Eds.), Proc. Conf. Monster and Lie Algebras, de Gruyter, Berlin, 1998], we study a decomposition of the lattice vertex operator algebra as a direct sum of irreducible modules of a certain tensor product of Virasoro vertex operator algebras and a parafermion algebra Wl+1(2l/(l+3)). We find that the vertex operator algebra contains a subalgebra isomorphic to a parafermion algebra Wl+1(2l/(l+3)) of central charge 2l/(l+3). A complete decomposition of the vertex operator algebra as a direct sum of irreducible modules of , where ci, i=1,…,l, is given by the discrete series ci=1−6/(i+2)(i+3), is also obtained.
  • Journal title
    Journal of Algebra
  • Serial Year
    2004
  • Journal title
    Journal of Algebra
  • Record number

    696523