Title of article
Thin loop algebras of Albert–Zassenhaus algebras
Author/Authors
Marina Avitabile، نويسنده , , Sandro Mattarei، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2007
Pages
28
From page
824
To page
851
Abstract
Thin Lie algebras are Lie algebras over a field, graded over the positive integers and satisfying a certain narrowness condition. In particular, all homogeneous components have dimension one or two, and are called diamonds in the latter case. The first diamond is the component of degree one, and the second diamond can only occur in degrees 3, 5, q or 2q−1, where q is a power of the characteristic of the underlying field. Here we consider several classes of thin Lie algebras with second diamond in degree q. In particular, we identify the Lie algebras in one of these classes with suitable loop algebras of certain Albert–Zassenhaus Lie algebras. We also apply a deformation technique to recover other thin Lie algebras previously produced as loop algebras of certain graded Hamiltonian Lie algebras.
Keywords
deformation , Modular Lie algebra , graded Lie algebra , Thin Lie algebra , Loop algebra
Journal title
Journal of Algebra
Serial Year
2007
Journal title
Journal of Algebra
Record number
698260
Link To Document