• Title of article

    A Schneider type theorem for Hopf algebroids

  • Author/Authors

    A. Ardizzoni، نويسنده , , G. B?hm، نويسنده , , C. Menini، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2007
  • Pages
    45
  • From page
    225
  • To page
    269
  • Abstract
    Comodule algebras of a Hopf algebroid with a bijective antipode, i.e. algebra extensions B A by , are studied. Assuming that a lifted canonical map is a split epimorphism of modules of the (non-commutative) base algebra of , relative injectivity of the -comodule algebra A is related to the Galois property of the extension B A and also to the equivalence of the category of relative Hopf modules to the category of B-modules. This extends a classical theorem by H.-J. Schneider on Galois extensions by a Hopf algebra. Our main tool is an observation that relative injectivity of a comodule algebra is equivalent to relative separability of a forgetful functor, a notion introduced and analysed hereby.
  • Keywords
    Relative separable functors , Relative injective comodule algebras , Galois extensions , Hopf algebroids
  • Journal title
    Journal of Algebra
  • Serial Year
    2007
  • Journal title
    Journal of Algebra
  • Record number

    698365