Title of article
Parabolic Subgroups of Artin Groups Original Research Article
Author/Authors
Luis Paris، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 1997
Pages
31
From page
369
To page
399
Abstract
Let (A, Σ) be an Artin system. ForX subset of or equal to Σ, we denote byAXthe subgroup ofAgenerated byX. Such a group is called a parabolic subgroup ofA. We reprove Van der Lekʹs theorem: “a parabolic subgroup of an Artin group is an Artin group.” We give an algorithm which decides whether two parabolic subgroups of an Artin group are conjugate. LetAbe a finite type Artin group, and letAXbe a parabolic subgroup with connected associated Coxeter graph. The quasi-centralizer ofAXinAis the set of β inAsuch that βXβ−1 = X. We prove that the commensurator ofAXinAis equal to the normalizer ofAXinA, and that this group is generated byAXand the quasi-centralizer ofAXinA. Moreover, ifAXis not of typeDl(l ≥ 4 andleven), then this group is generated byAXand the centralizer ofAXinA.
Journal title
Journal of Algebra
Serial Year
1997
Journal title
Journal of Algebra
Record number
700600
Link To Document