• Title of article

    Permutation Polynomials Modulo 2w

  • Author/Authors

    Ronald L. Rivest.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2001
  • Pages
    6
  • From page
    287
  • To page
    292
  • Abstract
    We give an exact characterization of permutation polynomials modulo n=2w, w≥2: a polynomial P(x)=a0+a1x +•••+adxd with integral coefficients is a permutation polynomial modulo n if and only if a1 is odd, (a2+a4+a6+•••) is even, and (a3+a5+a7+•••) is even. We also characterize polynomials defining latin squares modulo n=2w, but prove that polynomial multipermutations (that is, a pair of polynomials defining a pair of orthogonal latin squares) modulo n=2wdo not exist.
  • Journal title
    Finite Fields and Their Applications
  • Serial Year
    2001
  • Journal title
    Finite Fields and Their Applications
  • Record number

    701010