Title of article
On the Distribution of Multiplicative Translates of Sets of Residues (mod p) Original Research Article
Author/Authors
Hastad J.، نويسنده , , Lagarias J. C.، نويسنده , , Odlyzko A. M.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 1994
Pages
15
From page
108
To page
122
Abstract
Let R be a set of r distinct nonzero residues modulo a prime p, and suppose that the random variable a is drawn with the uniform distribution from {1, 2,..., p − 1}. We show for all sets R that (p − 2)/(2r) ≤ E[min[aR]] ≤ 100 p/r1/2, where in the set aR each integer is identified with its least positive residue modulo p. We give examples where E[min[aR]] ≤ 0.8 p/r and E[min[aR]] ≥ 0.4 p(log r)/r. We conjecture that E[min[aR]] much less-than p/r1 − ε holds for a wide range of r. These results are applicable to the analysis of certain randomization procedures.
Journal title
Journal of Number Theory
Serial Year
1994
Journal title
Journal of Number Theory
Record number
714280
Link To Document