• Title of article

    Hecke–Siegelʹs pull-back formula for the Epstein zeta function with a harmonic polynomial Original Research Article

  • Author/Authors

    Kazuki Hiroe، نويسنده , , Takayuki Oda، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2008
  • Pages
    23
  • From page
    835
  • To page
    857
  • Abstract
    In this paper, we discuss the generalization of the Heckeʹs integration formula for the Epstein zeta functions. We treat the Epstein zeta function as an Eisenstein series come from a degenerate principal series. For the Epstein zeta function of degree two, Siegel considered the Heckeʹs formula as the constant term of a certain Fourier expansion of the Epstein zeta function and obtained the other Fourier coefficients as the Dedekind zeta functions with Grössencharacters of a real quadratic field. We generalize this Siegelʹs Fourier expansion to more general Eisenstein series with harmonic polynomials. Then we obtain the Dedekind zeta functions with Grössencharacters for arbitrary number fields.
  • Journal title
    Journal of Number Theory
  • Serial Year
    2008
  • Journal title
    Journal of Number Theory
  • Record number

    716111